Friday, April 20, 2018

Announcing the 2017 YEP Award winners

The Yes! Education Program (YEP) Award, an initiative run by our partners AET Japan, grants an extended one-year license to universities that use CST software, in order to assist their research projects.

We spoke to this year's winners about their work and their experience with CST STUDIO SUITE the winners came from the National Defense Academy and the University of Yamanashi.


"A Linear Array Antenna of Microstrip Patch Antennas Fed by the Open-End of Coplanar Waveguides" by Toshihisa Kamei, Hiromi Shima, Syotaro Fukuda, Seishiro Ishii of the National Defense Academy 

Dr. Toshihisa Kamei
"It is our great pleasure that our recent paper [*] has been honored with the YEP Award. In this paper, we presented a 4-element linear array antenna using four 20 GHz band microstrip patch antennas. The signal is fed to the patch antennas from open-end coplanar waveguides without contact. We investigated factors related to the design of linear patch antenna arrays. Our group is working on communication, meteor burst communication systems, fundamental and
applied research of radio wave absorbers in the millimeter wave and microwave band from MHz to THz.
Our lab has been using CST for over 10 years. Based on the direct calculation along with realistic excitation ports and probes, we are able to model and investigate any novel structures on CST. CST STUDIO SUITE also serves as the best tool for our students to learn Maxwell’s equations and a common language. We believe that CST Software is very convenient for university education and research and allows quick testing of new and difficult ideas at a low cost.' - Dr. Toshihisa Kamei

[*] Toshihisa Kamei, Hiromi Shima, Syotaro fukuda, Seishiro Ishii

A Linear Array Antenna of Microstrip Patch Antennas Fed by the Open-End of Coplanar Waveguides, Pub. Date: April 14, 2017DOI:10.4236/wer.2017.820


“A Novel REBCO Wire Structure That Improves Coil Quality Factor in MHz Range and its Effect on Wireless Power Transfer Systems” by N. Sekiya and Y. Monjugawa of the University of Yamanashi

Dr. Sekiya's lab students
"We would be greatly honored to receive the CST YEP AWARD2017 for our published paper [*]. We also appreciate the cooperation between our lab students and CST support.

In this paper, we described the development and application of superconducting wire which realizes low losses at high frequencies. Conventional superconducting wire has no loss in direct current, but a high loss at high frequencies. That is why the application in this field has not developed. To solve this problem, we propose a new superconducting wire structure and investigate its effect through simulation and experimental verification.

Superconducting wire requires a substantial amount of time to calculate because they have a multilayer structure. As our lab had the small number of staff, we needed to proceed our research effectively. Under these circumstances, CST STUDIO SUITE helped us to proceed our research more efficiently. We will continue to use CST STUDIO SUITE to create innovative research." -Dr. Naoto Sekiya
Dr. Naoto Sekiya

[*] N. Sekiya and Y. Monjugawa, “A Novel REBCO Wire Structure That Improves Coil Quality Factor in MHz Range and its Effect on Wireless Power Transfer Systems”
     
Learn more about our academic programs here. 

Thursday, April 19, 2018

Featured whitepaper: Optical Materials in CST STUDIO SUITE


CST recently published a new whitepaper about simulating special optical materials in integrated components with CST STUDIO SUITE®. 

For many optical applications, materials are needed with anisotropic or nonlinear
properties. Two important examples of such properties are birefringence and dichroism.
Such materials exhibit different refractive indices and attenuation for orthogonal optical
polarization states. They are used to alter the polarization state of the light for example in
polarizers or polarization converters. A special case of a polarization dependent material
property is magneto-optical activity. Magneto-optical active materials can also be used to
alter the polarization state, but more importantly they can be used to build non-reciprocal
components like isolators. Further, the optical properties can not only depend on the state of
polarization but also on the electric field amplitude of the light wave. The optical properties
can depend on the second, third power or even higher powers of the electric field. Here,
the effects and applications are vast – amplification, frequency conversion, and all-optical
switching to name but a few.

To learn more, read "Optical Materials in CST STUDIO SUITE"

Wednesday, April 11, 2018

Submit to the CST University Publication Award

The deadline to submit your work for the CST University Publication Award is April 15, 2018. To honor the work that is done using CST STUDIO SUITE® at institutions around the world, we present the CST University Publication Award. Past awardees have pioneered breakthroughs in a wide range of fields. The winners' respective university institutes will recieve upgraded licenses for one year.

We recently published an interview with one of the 2017 winners about their breakthrough in filter design for satellite communications using CST STUDIO SUITE®You can see all of last year's winners here: 2017 University Publication Award Winners

Work published April 1, 2017 - March 31, 2018 can be submitted for our University Publication Award. The submission must be in English and should also state the place of publication. Only one paper per candidate will be considered so please limit your submissions to one paper.

Friday, April 6, 2018

NVIDIA Quadro GPU acceleration in CST STUDIO SUITE®


The high memory bandwidth and parallel processing abilities of GPU cards mean that GPU computing can provide significant simulation speed advantages over conventional CPU computing.  A series of comparative analyses were carried out to test the performance of NVIDIA’s Quadro GP100 and the brand new GV100 device, pictured below in Figure 1. These tests were performed using various models which represent typical applications that are simulated in the CST STUDIO SUITE® Time-Domain Solver.


Figure 1 - The NVIDIA Quadro GV100 features 5120 CUDA cores, 32GB of HBM2 memory, 7.4 TFLOPs double precision performance and a remarkable 900GB/s memory bandwidth, making it the fastest GPU device for simulation acceleration.

An initial study was done to compare the Quadro GP100 and Quadro GV100 against a high-end CPU model of the Intel Xeon Broadwell family. The CPU vs. GPU performance in Figure 2 shows that the NVIDIA Quadro devices can provide a significant speed-up to the Time-Domain Solver Loop*. On average, the latest GV100 model is shown to perform about 8 times faster than a high-end CPU; the performance of the GP100 model is not too far behind with an average speed-up factor around 7.


Figure 2  - The above plot represents the solver loop speed-up factor due to GPU computing, in reference to Dual Intel Xeon E5-2643 v4 CPUs with 12 physical cores, 3.4GHz clock, DDR4 2400MHz memory modules, on a Windows Server 2012 R2 system.

In another test, a direct comparison of the GP100 vs. GV100 was performed. The benchmark results shown in Figure 3 illustrate the GV100 performs about 20% faster than the GP100 device. This is in-line with what is expected, since the solver speed-up tends to be proportional to the difference in memory bandwidth of the GPU devices. The new Quadro GV100 device has an impressive memory bandwidth specification of 900GB/s vs. the GP100 at 732GB/s.


Figure 3 - The above plot represents the Solver Loop percentage speed-up (%) provided by the Quadro GV100 in reference to the Quadro GP100.

Along with high memory bandwidth and parallelization capabilities, NVIDIA Quadro GPU devices have many additional noteworthy features. For instance, select Quadro cards can be utilized for the CST STUDIO SUITE double-precision solvers due to their powerful performance capabilities in this aspect. The Quadro GP100 and GV100 cards have fast double-precision performance at 5.2TFLOPs and 7.4TFLOPS respectively. The new Quadro GV100 also provides a significant increase in GPU RAM at 32GB making it very suitable for larger and more demanding tasks, which have not been possible for single GPU devices thus far.

In parallel to their computational acceleration capabilities, Quadro series GPU cards can be utilized for their accelerated graphics capabilities; this means there is no requirement for an additional adapter. Quadro cards are specifically dedicated to CAD/CAE applications and well tested with CST STUDIO SUITE, making them the recommended option for display. They are also a particularly interesting option for those who are interested in a GPU dedicated for a workstation over a server-class system. Since these devices are actively cooled, they can be installed into a workstation chassis, which tends to be a more cost efficient option for simulations which can be solved within the resources of a single system.

NVIDIA just announced the release of the NVIDIA Quadro GV100 at the end of Q1 in 2018. This device is scheduled to be supported in CST STUDIO SUITE 2018 Service Pack 4 for the Time Domain solver. Full support of the GV100 for all GPU-empowered solvers will become available in the next major release. GPU-empowered solvers consist of: Transient FIT & TLM, Particle-in-Cell, Asymptotic, Integral-Equation, Multilayer and Conjugate Heat Transfer solvers. The NVIDIA Quadro GP100 device, which was also used in this study, has been fully supported since CST STUDIO SUITE 2017 Service Pack 2.


*Note that the solver loop time is not a representation of the total simulation time. The solver loop is the main, and most compute intensive phase of a time-domain simulation. The solver is the only phase of the simulation which takes advantage of GPU computation.


 Melissa Reis 
 Application Engineer
 CST of America

Friday, March 16, 2018

Success story: Drayson Technologies Develops Innovative Energy Harvesting Technology with CST STUDIO SUITE


The CleanSpace Tag monitors air pollution and includes
Freevolt RF Energy Harvesting technology.
When Drayson Technologies were working on a compact smart sensor for monitoring air pollution incorporating Freevolt™ RF energy harvesting, Drayson's proprietary wireless charging technology, they looked to CST STUDIO SUITE® to help solve a tough electromagnetic challenge. 

The challenge: recharge the battery of an IOT sensor device. What resulted was a device that can harvest RF energy when sufficient RF power density is available. Check out the success story on our website for all the details.

“CST offers Complete Technology for simulation, with all its different solvers in one user interface. This meant that we were able to use the best solver for each application: for example, the Time Domain Solver for high-frequency simulations such as designing CleanSpace tag or the Bluetooth antenna, but easily transfer to the Frequency Domain Solver for low-frequency simulations of inductive power transfer. GPU acceleration made it possible to simulate the entire tag efficiently, speeding up simulation time and saving money.” 
-Drayson Technologies 

Read the full success story here

 


Wednesday, March 14, 2018

A breakthrough in filter design for satellite communications using CST STUDIO SUITE®


In December, we announced the winners of our CST University Publication Award. Every year, we select three papers and one short paper to honor and we are excited to share some of the details behind the winning research. We spoke to Dr. Miguel Laso to learn more about his team's award winning paper, “Chirping Techniques to Maximize the Power-Handling Capability of Harmonic Waveguide Low-Pass Filters.”

CST: What is the challenge that this new filter method addresses? 

Dr. Laso: The filter in this paper is the result of a multi-year collaboration between TESAT Spacecom GmbH and the Microwave Components Group at UPNA in the framework of several contracts and ESA projects. TESAT and UPNA have successfully developed a new standard of  output lowpass filter for the communications satellite payload, which withstands the combined power of all the satellite channels and cleans all the channel signals at the same time from spurious responses. This avoids the use of many individual low-pass filters, one per channel, as it is usually done now. In this paper, we surpassed our previous results, getting a filter to handle more than 100 kW, while the equivalent classical waffle-iron filter handles only 0.15 kW (!!!) before the multipactor effect appears and ruins communication.

How does this chirping technique help engineers improve their filter designs? 

Currently, although very good high-power analysis tools such as SPARK3D or CST PARTICLE STUDIO® exist, the space industry usually conducts also a costly testing campaign of the satellite parts before they are launched into space to check that everything works fine. The European Cooperation for Space Standardization (ECSS) - Multipaction design and test- is the document that the industry uses to conduct such testing campaigns. Getting such high-power handling capability, such as 100 kW in an analysis, theoretically avoids the use of this “just-in-case” testing to check whether the filter will withstand the conditions in a real working situation in space. This saves a lot of time and budget. According to the current ECSS document, the filter in the paper should handle at least 70 kW in simulation for testing to be considered unnecessary. We easily get more than 100 kW.

EM fields inside the filter using CST STUDIO SUITE. Image courtesy of Dr. Miguel Laso.

How did you use FEST3D in your research project? 

FEST3D is the ideal tool to simulate such kind of devices based on the concatenation of waveguide sections, and we can obtain the S-parameters of the filter very quickly and reliably. FEST3D also allows us to optimize the device very easily. Finally, FEST3D is also used to check the filter behavior for multimode excitation.

How did you use CST STUDIO SUITE®? 


In the paper, CST MICROWAVE STUDIO® (CST MWS), part of CST STUDIO SUITE®, is used to see the fields inside the filter. This allows us to adjust several of the most important filter parameters, such as the minimum mechanical gap, the waveguide length between the filter elements, and the length of the elements themselves, to maximize the filter power-handling capability. The power-handling was checked with SPARK3D, where we used the fields previously calculated. We also make use of CST MWS to include in the design phenomena such as the milling rounding, wall tilting, and several other imperfections that we have in the real world when the part is milled at the workshop. CST STUDIO SUITE® has also been used by our research group to simulate the frequency response of passive devices with unconventional non-step-shaped profiles, such as smooth or continuous profiles, a flagship of our research outcomes and papers for many years.

More generally, has the CST academic license and the CST University Publication Award helped your team? 
A lot, not only to simulate the sometimes “strange” devices that we imagine or which result from our design techniques but also to train our younger undergraduate students in class or at the doctoral level in the design of satellite components. The CST University Publication Award confirms that we are taking full advantage of the CST tools and it is an incentive for us to continue exploring their possibilities.

What’s next for you – are you working on this technique further? 

We have been working on this idea for years and have applied it to several scenarios. We recently successfully closed an ESA project on its use for future Ka-band multibeam payloads. Although the improvement of a novel concept is endless, we believe that the idea is already very mature and it is being used by TESAT, which is also the current owner of the patent. More generally, we will continue working on microwave filters and passive devices in the future, particularly for space applications. As an example of our current interests, we are currently working hard on a new design method for bandpass filters for the future high-capacity Q/V/W –bands and above (this is a Ph.D. thesis co-funded by ESA). We have already reported very good results in combining excellent frequency behavior, power-handling, and fabrication easiness, the latter using the same milling tolerances employed at the workshop for lower (Ku/Ka) frequency bands.

Is there anything else you would like to mention? 

We thank the CST family for their support. We believe we were one of your first clients in Europe many years ago and you have been a part of many of our research papers ever since. We feel honoured that you have considered our work as an outstanding good practice example for the community.

The team that authored this paper at Universidad Publica de Navarra consisted of Fernando Teberio, Ivan Arregui, Adrian Gomez-Torrent, Israel Arnedo, Magdalena Chudzik, Michael Zedler, Franz-Josef Görtz, Rolf Jost, Txema Lopetegi, and Miguel A. G. Laso.

The research team at Universidad Publica de Navarra. Photo courtesy of Dr. Miguel Laso.







Tuesday, March 6, 2018

Call for contributions: CST SIMULIA EUC 2018

We are in full gear preparing for one of the highlights of the CST year, our annual European User Conference (EUC) and we are looking forward to seeing our users' presentation submissions. There’s nothing quite like the intellectual energy that comes from so many of our customers coming together to share their work, their ideas and to discuss the bright future of simulation.

Customer contributions are crucial to the success of this conference and EUC provides a valuable opportunity to share your knowledge and advance the collective expertise of CST users.
To contribute a presentation, please submit an abstract of between 100-200 words by registering and submitting your abstract online.

For contributors with an accepted presentation who hold a valid CST maintenance contract, the registration fee will be waived. To qualify for this discount, the final abstract must be received by March 15, 2018, and the finished presentation by April 30, 2018. See our website for full details


Still not sure? Hear what people have to say about the EUC experience.

"We have the chance to meet with different companies who are working closely together with electronic products and simulation and I think there is a big benefit for all the people here who attend these sessions, learn new things and learn what is coming in the future." - Damien Kirscher, Altium 

“I think that, being a CST user, this conference puts you in contact with the biggest experts in EM simulation so that you can really take advantage of this during the conference. Also, for those attendees coming from the academic sector, being in contact with people from the industry is always a good opportunity. Likewise, the industry-related attendees can also see the latest advances in design and simulation from some of the most relevant research groups.”
 - Carlos Vicente, Aurorasat 

 "I have attended CST EUC several times and for me, each one is an exciting event. I get to see the software from the user's perspectives. and then develop our own methods and see where we still have empty areas where we should research further. Furthermore, I know many people here who I work very well with and remain in contact with and I'm looking forward to attending again." - Markus Clemens, Bergische Universität Wuppertal

“In my experience EUC is a great opportunity to learn, share and interact with experts in various application areas. It is the ideal place to discuss your ideas and see what other CST users are doing. This event will certainly enrich your simulation experience and hopefully also help you to improve your workflows in the future.” - Theunis Beukman, CST

"The support room is really interesting because I use it to pose my questions. With face-to-face communication it's easier to find solutions." - Tatiana Rijoff, CERN 

We look forward to seeing you in June!